А. Энергетический обмен в мышечной ткани

Важнейшей функцией мышечного волокна является сократительная. Процесс сокращения и расслабления связан с потреблением АТФ (АТР), гидролиз которого катализирует миозин-АТФ-аза [1] (см. Сократительная система). Однако небольшой запас АТФ, имеющийся в мышцах, расходуется менее чем за 1 с после стимуляции.

Потребности работающей мышцы в АТФ удовлетворяются за счёт следующих ферментативных реакций: 1. Резерв в виде креатинфосфата. Быстрая регенерация АТФ может быть достигнута за счёт переноса фосфатной группы креатинфосфата на АДФ (ADP) в реакции, катализируемой креатинкиназой [2]. Однако и этот мышечный резерв «высокоэргического фосфата» расходуется в течение нескольких секунд. В спокойном состоянии креатинфосфат вновь синтезируется из креатина. При этом фосфатная группа присоединяется по гуанидиновой группе креатина (N-гуанидино-М-метилглицина). Креатин, который синтезируется в печени, поджелудочной железе и почках, в основном накапливается в мышцах. Здесь креатин медленно циклизуется за счёт неферментативной реакции [3] с образованием креатинина, который поступает в почки и удаляется из организма (см. Моча).

2. Анаэробный гликолиз. В мышечной ткани наиболее важным долгосрочным энергетическим резервом является гликоген (см. Сократительная система). В покоящейся ткани содержание гликогена составляет до 2 % от мышечной массы. При деградации под действием фосфорилазы гликоген легко расщепляется с образованием глюкозо-6-фосфата, который при последующем гликолизе превращается в пируват. При большой потребности в АТФ и недостаточном поступлении кислорода пируват за счёт анаэробного гликолиза восстанавливается в молочную кислоту (лактат), которая диффундирует в кровь (цикл Кори, см. Метаболическая регуляция мышечного сокращения).

3. Окислительное фосфорилирование. В аэробных условиях образующийся пируват поступает в митохондрии, где подвергается окислению. Окислительное фосфорилирование (см. Белки главного комплекса гисто-совместимости) - наиболее эффективный и постоянно действующий путь синтеза АТФ. Однако этот путь реализуется при условии хорошего снабжения мышц кислородом. Наряду с глюкозой, образующейся при расщеплении мышечного гликогена, для синтеза АТФ используются и другие «энергоносители», присутствующие в крови: глюкоза крови, жирные кислоты и кетоновые тела.

4. Образование инозинмонофосфата [ИМФ (IMP)]. Другим источником быстрого восстановления уровня АТФ является конверсия АДФ в АТФ и АМФ (АМР), катализируемая аденилаткиназой (миокиназой) [5]. Образовавшийся АМФ за счёт дезаминирования частично превращается в ИМФ (инозинмонофосфат) (см. Цитостатики), что сдвигает реакцию в нужном направлении.

Из всех способов синтеза АТФ наиболее продуктивным является окислительное фосфорилирование. За счёт этого процесса обеспечиваются потребности в АТФ постоянно работающей сердечной мышцы (миокарда). Вот почему для успешной работы сердечной мышцы обязательным условием является достаточное снабжение кислородом (инфаркт миокарда — это следствие перебоев в поступлении кислорода).

В высокоактивных (красных) скелетных мышцах источником энергии для рефосфорилирования АДФ служит окислительное фосфорилирование в митохондриях. В обеспечении этих мышц кислородом принимает участие миоглобин ((Mb) — близкий гемоглобину белок, обладающий свойством запасать кислород. В малоактивных скелетных мышцах, лишённых красного миоглобина и поэтому белых, главным источником энергии для восстановления уровня АТФ является анаэробный гликолиз. Такие мышцы сохраняют способность к быстрым сокращениям, однако они могут работать лишь короткое время, поскольку при гликолизе образование АТФ идёт с низким выходом. Спустя некоторое время мышцы истощаются в результате изменения pH в мышечных клетках.

Расщепление гликогена контролируется гормонами (см. Гормональный контроль). Процесс гликогенолиза стимулируется адреналином (через b-рецепторы) за счёт образования цАМФ и активации киназы фосфорилазы. Активация фосфорилазы наступает также при увеличении концентрации ионов Са2+ во время мышечного сокращения.


Ткани и органы. Мышцы / Источники энергии

Следущая статья   |   — Вернуться в раздел


Handbook of Nanoindentation: With Biological Applications / Broadly divided into two parts, this guide’s first part presents the a’basic sciencea’ of nanoindentation, including the background of contact mechanics underlying indentation technique, and the instrumentation used to gather mechanical data. Both the mechanics background and the instrumentation oveHandbook of Nanoindentation: With Biological Applications
Broadly divided into two parts, this guide’s first part presents the a’basic sciencea’ of nanoindentation, including the background of contact ...
Физическая химия. Денатурации белков / Физическая химия. Денатурации белковФизическая химия. Денатурации белков
Физическая химия. Денатурации белков
Введение в биофизическую химию / Книга представляет собой руководство по биофизической химии, в котором кратко и вместе с тем доступно изложены принципы и методы физических и физико-химических исследований биологических макромолекул (белков, нуклеиновых кислот и нуклеопротеидов). В ней приведены сведения о самых разнообразных свойсВведение в биофизическую химию
Книга представляет собой руководство по биофизической химии, в котором кратко и ...
Биохимическая эволюция / Автор ставил себе задачей в этой небольшой книге осветить биохимическую сторону эволюции и классификации животных, показав, что имеются биохимические систематические признаки. Возможность присовокупить к зоологической классификации, разработанной морфологами, классификацию биохимического порядка не Биохимическая эволюция
Автор ставил себе задачей в этой небольшой книге осветить биохимическую сторону ...