А. Промежуточный метаболизм: общие сведения

Ряд основных метаболических путей является общим для большинства клеток и организмов. Эти пути, в результате которых осуществляются синтез, разрушение и взаимопревращение наиболее важных метаболитов, а также накопление химической энергии, называются промежуточным метаболизмом. Здесь приводится сильно упрощённая схема этих процессов.

Живые клетки постоянно нуждаются в органических и неорганических веществах, а также в химической энергии, которую они получают преимущественно из АТФ (АТР). По способу удовлетворения этих потребностей организмы подразделяются на автотрофные и гетеротрофные. Автотрофные организмы, к которым принадлежат растения и многие микроорганизмы, могут синтезировать органические молекулы из неорганических предшественников (CO2), к примеру, за счёт фотосинтеза (см. Кровь: состав и функции).

Гетеротрофы, например животные и грибы, зависят от получения органических веществ с пищей. Так как большая часть этих питательных веществ (белки, углеводы, нуклеиновые кислоты и липиды) не могут утилизироваться непосредственно, они сначала разрушаются до более мелких фрагментов катаболическим путём (на схеме красные стрелки). Возникающие метаболиты (в совокупности их называют иногда «пулом метаболитов») затем катаболизируются с высвобождением свободной энергии или используются в анаболических путях (голубые стрелки) для синтеза более сложных молекул. Из многочисленных метаболитов здесь представлены только три наиболее важных представителя — пируват, ацетил-КоА и глицерин. Эти три соединения являются связующим звеном между метаболизмом белков, углеводов и липидов. К метаболическому пулу принадлежат также промежуточные метаболиты цитратного цикла (6). Этот циклический путь играет как катаболическую, так и анаболическую роль, то есть является амфиболическим (см. Антитела). Конечными продуктами разрушения органических веществ у животных являются диоксид углерода (CO2), вода (H2O) и аммиак (NH3). Аммиак превращается в мочевину и в такой форме выводится из организма (см. Эйкозаноиды).

Наиболее важной формой запасания химической энергии в клетках является аденозинтрифосфат (АТФ, см. Секвенирование ДНК). На образование АТФ должна расходоваться энергия, то есть реакция является эндоэргической. В то же время при расщеплении АТФ на АДФ и фосфат высвобождается свободная энергия. За счёт экзоэргического гидролиза АТФ обеспечивает энергетическое сопряжение (см. Липиды) для осуществления энергозависимых (эндоэргических) процессов. Энергозависимыми являются, например, большинство анаболических путей, а также процессы движения и переноса.

Наиболее важный путь синтеза АТФ — окислительное фосфорилирование (см. Белки главного комплекса гисто-совместимости). В этом процессе электроны переносятся с восстановленных коферментов, возникающих в процессах катаболизма, на атом кислорода. Такие экзоэргические процессы катаболизма косвенным образом используются для синтеза АТФ. Большинство организмов могут в анаэробных условиях, то есть в отсутствие кислорода, получать АТФ за счёт гликолиза (3). Этот менее эффективный способ синтеза АТФ называют брожением (см. Метаболизм липидов).

В окислительном фосфорилировании используется только НАДН (NADH), а химически очень похожий кофермент НАДФН + Н+ (NADPH) служит восстановителем в анаболических путях. НАДФН + Н+ образуется преимущественно в гексозомонофосфатном пути (1, см. Гексозомонофосфатный путь).


Метаболизм. Регуляция / Промежуточный метаболизм

Статьи раздела «Промежуточный метаболизм»:

Следущая статья   |   — Вернуться в раздел


Открытие основных законов жизни / В книге изложены история развития и основные достижения молекулярной биологии — от открытия живой клетки до выяснения механизмов биосинтеза белка, строения и функционирования генов. Рассмотрены перспективы дальнейшего развития молекулярной биологии и значение её достижений для расшифровки таких сложОткрытие основных законов жизни
В книге изложены история развития и основные достижения молекулярной биологии — ...
Practical Forensic Microscopy: A Laboratory Manual / Forensic Microscopy: A Laboratory Manual will provide the student with a practical overview and understanding of the various microscopes and microscopic techniques employed within the field of forensic science. Each laboratory experiment has been carefully designed to cover the variety of evidence dPractical Forensic Microscopy: A Laboratory Manual
Forensic Microscopy: A Laboratory Manual will provide the student with a practical overview and understanding of the various microscopes and ...
Биофизика ДНК-актиномициновых нано-комплексов / В монографии д.б.н., в.н.с. ИБК РАН Н.Л.Векшина на примере актиномицинов рассматриваются нано-комплексы противоопухолевых гетероциклических антибиотиков с ДНК, полинуклеотидами, олигонуклеотидами и агрегатами пуринов, изучаемых с помощью спектроскопических методов. Приводятся экспериментальные данныБиофизика ДНК-актиномициновых нано-комплексов
В монографии д.б.н., в.н.с. ИБК РАН Н.Л.Векшина на примере актиномицинов ...
Методы в молекулярной биофизике. Структура. Функция. Динамика. В 2 томах. Том 2 / Учебное пособие посвящено современному описанию физико-химических подходов, используемых в исследовании структурно-функциональных основ жизненных процессов. В нем отражены новейшие достижения в изучении структуры, динамики и функции биологических макромолекул при использовании классических и новейшиМетоды в молекулярной биофизике. Структура. Функция. Динамика. В 2 томах. Том 2
Учебное пособие посвящено современному описанию физико-химических подходов, ...