А. Реализация и передача генетической информации

Хранение информации. Генетическая информация закодирована в последовательности нуклеотидов ДНК (DNA), организованных в функциональные участки, называемые генами. [РНК (RNA) как носитель генетической информации используется только некоторыми вирусами.] Участки ДНК кодируют белки, то есть они содержат информацию об аминокислотной последовательности белков. Каждый остаток представлен в ДНК своим кодовым словом (кодоном), состоящим из трёх следующих друг за другом оснований. Так, ДНК-кодон для фенилаланина представлен тринуклеотидом ТТС (2). На уровне ДНК кодоны образуют её некодирующую цепь [последовательность нуклеотидов которой соответствует последовательности мРНК (mRNA)].

Репликация. Во время деления клеток генетическая информация должна перейти в дочерние клетки. Для достижения этого вся ДНК клетки копируется в процессе репликации во время S-фазы клеточного цикла (см. Клеточный цикл), при этом каждая её цепь служит матрицей для синтеза комплементарной последовательности (1, см. Репликация).

Транскрипция. Для экспрессии гена, то есть синтеза закодированных в нем белков, последовательность нуклеотидов кодирующей цепи ДНК должна быть трансформирована в аминокислотную последовательность. Поскольку ДНК не принимает непосредственного участия в синтезе белка, информация, хранящаяся в ядре, должна быть перенесена на рибосомы, где собственно и осуществляется биосинтез белков. Для этого соответствующий участок кодирующей цепи ДНК считывается (транскрибируется) с образованием гетерогенной ядерной РНК [гяРНК (hnRNA)], то есть последовательность этой РНК комплементарна кодирующей цепи ДНК (3; см. Деградация нуклеотидов). Поскольку в РНК вместо тимина содержится урацил (см. Трансаминирование и дезаминирование), AAG триплет ДНК трансформируется в UUC-кодон гяРНК.

Созревание РНК. У эукариот гяРНК, прежде, чем покинуть ядро в виде матричной РНК (мРНК, 4), претерпевает существенные изменения: из молекулы вырезаются избыточные (некодирующие) участки (интроны), а оба конца транскриптов модифицируются путём присоединения дополнительных нуклеотидов (см. Созревание РНК).

Трансляция. Зрелая мРНК попадает в цитоплазму и связывается с рибосомами, преобразующими полученную информацию в аминокислотную последовательность. Рибосомы (см. Рибосомы: инициация трансляции) — это рибонуклеопротеидные комплексы, включающие несколько десятков белков и несколько молекул рибосомной РНК [рРНК (rRNA), см. Цикл мочевины]. Рибосомные РНК выполняют функцию структурного элемента рибосом, а также принимают участие в связывании мРНК и образовании пептидных связей.

Механизм преобразования генетической информации основан на взаимодействии кодонов мРНК с транспортной РНК [тРНК (tRNA)], которая переносит на рибосому аминокислоты, связанные с 3′-концом тРНК, в соответствии с информацией, закодированной в мРНК. Примерно в середине цепи тРНК расположен триплет (например, GAA), называемый антикодоном и комплементарный соответствующему кодону в мРНК. Если транслируется кодон UUC, то с ним взаимодействует антикодон в составе Phe-TPHK (5), несущей на 3′-конце остаток фенилаланина. Таким образом, остаток аминокислоты занимает положение, в котором на него может быть перенесена растущая полипептидная цепь, связанная с соседней тРНК (6).

Активация аминокислот. Прежде чем связаться с рибосомой, транспортные РНК присоединяют соответствующую аминокислоту с помощью специфического «узнающего» фермента (7, схема Генетический код, активация аминокислот), обеспечивающего точный перенос (трансляцию) генетической информации с уровня нуклеиновых кислот на уровень белка.


Молекулярная генетика / Молекулярная генетика: общие сведения

Статьи раздела «Молекулярная генетика: общие сведения»:

Следущая статья   |   — Вернуться в раздел


Лекции по природоведческой микробиологии / Книга основана на курсе лекций, прочитанных в МГУ им. М. В. Ломоносова в 1995-2002 гг. Основное внимание уделено анализу природной среды обитания в рамках больших биосферных систем. Бактерии — катализаторы биогеохимических циклов, сформировали биосферу в течение первых двух третей её существования иЛекции по природоведческой микробиологии
Книга основана на курсе лекций, прочитанных в МГУ им. М. В. Ломоносова в 1995-2002 гг. ...
Biotechnology Annual R Volume 14 (Biotechnology Annual Review) (Biotechnology Annual Review) / Biotechnology is a diverse, complex, and rapidly evolving field. Students and experienced researchers alike face the challenges of staying on top of developments in their field of specialty and maintaining a broader overview of the field as a whole. This latest volume of Biotechnology Annual Review Biotechnology Annual R Volume 14 (Biotechnology Annual Review) (Biotechnology Annual Review)
Biotechnology is a diverse, complex, and rapidly evolving field. Students and experienced researchers alike face the challenges of staying on top of ...
Защита от биоповреждений, вызываемых грибами / Книга посвящена проблеме снижения химической и биологической опасности в сфере профилактики и борьбы с микоповреждениями промышленных материалов. На основании данных современной литературы и собственных исследований авторы показали, что с этой целью химические и природные фунгициды целесообразно испЗащита от биоповреждений, вызываемых грибами
Книга посвящена проблеме снижения химической и биологической опасности в сфере ...
Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology / Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and applications of protein crystallography. Deftly illustrated in full-color by the author, the text describes mathematical and physical concepts in accessibBiomolecular Crystallography: Principles, Practice, and Application to Structural Biology
Synthesizing over thirty years of advances into a comprehensive textbook, Biomolecular Crystallography describes the fundamentals, practices, and ...