Б. Энергетический обмен головного мозга

Головной мозг хорошо снабжается кровью и имеет интенсивный энергетический обмен. Хотя головной мозг составляет около 2 % массы тела, при спокойном состоянии организма он утилизирует около 20 % поглощённого кислорода и 60 % глюкозы, которая полностью окисляется до CO2 и H2O в цитратном цикле и путём гликолиза.

В клетках головного мозга практически единственным источником энергии, который должен поступать постоянно, является глюкоза. Только при продолжительном голодании клетки начинают использовать дополнительный источник энергии — кетоновые тела (см. Метаболизм липидов). Запасы гликогена в клетках головного мозга незначительны. Жирные кислоты, которые в плазме крови транспортируются в виде комплекса с альбумином, не достигают клеток головного мозга из-за гематоэнцефалического барьера. Аминокислоты не могут служить источником энергии для синтеза АТФ (АТР), поскольку в нейронах отсутствует глюконеогенез. Зависимость головного мозга от глюкозы означает, что резкое падение уровня глюкозы в крови, например, в случае передозировки инсулина у диабетиков, может стать опасным для жизни.

В клетках центральной нервной системы наиболее энергоёмким процессом, потребляющим до 40 % производимого АТФ, является функционирование транспортной +/K+-АТФ-азы (Na+/K+-«насосa») клеточных мембран [1] (см. Транспортные процессы). Активный транспорт ионов Na+ и K+ компенсирует постоянный поток ионов через ионные каналы. Кроме того, АТФ используется во многих биосинтетических реакциях.


Ткани и органы. Нервная ткань / Нервная ткань

Статьи раздела «Нервная ткань»:

Следущая статья   |   — Вернуться в раздел


Histone H1 glycation and rutin metabolites as glycation inhibitors: Nuclear protein glycation in vivo and novel natural product AGE inhibitors / Protein glycation, induced by hyperglycemia, is implicated in the appearance of diabetic complications and the aging process. Glycation involves the non-enzymatic reaction between sugars and protein amino groups that lead to formation of advanced glycation end products (AGEs). When aminoguanidine, aHistone H1 glycation and rutin metabolites as glycation inhibitors: Nuclear protein glycation in vivo and novel natural product AGE inhibitors
Protein glycation, induced by hyperglycemia, is implicated in the appearance of diabetic complications and the aging process. Glycation involves the ...
Биофизика ДНК-актиномициновых нано-комплексов / В монографии д.б.н., в.н.с. ИБК РАН Н.Л.Векшина на примере актиномицинов рассматриваются нано-комплексы противоопухолевых гетероциклических антибиотиков с ДНК, полинуклеотидами, олигонуклеотидами и агрегатами пуринов, изучаемых с помощью спектроскопических методов. Приводятся экспериментальные данныБиофизика ДНК-актиномициновых нано-комплексов
В монографии д.б.н., в.н.с. ИБК РАН Н.Л.Векшина на примере актиномицинов ...
NMR Studies of Structural Motifs: Protein Folding and Ligand Binding / NMR of Structural Motifs: The agrin G3 domain is critical in development and maintenance of the neuromuscular junction. G3 binds -dystroglycan and initiates acetylcholine receptor clustering on myotube membranes. Using NMR spectroscopy, we show both active B8 and inactive B0 isoforms binding sialic NMR Studies of Structural Motifs: Protein Folding and Ligand Binding
NMR of Structural Motifs: The agrin G3 domain is critical in development and maintenance of the neuromuscular junction. G3 binds -dystroglycan and ...
Physical Properties of Macromolecules / Explains and analyzes polymer physical chemistry research methods and experimental data Taking a fresh approach to polymer physical chemistry, Physical Properties of Macromolecules integrates the two foundations of physical polymer science, theory and practice. It provides the tools to understand poPhysical Properties of Macromolecules
Explains and analyzes polymer physical chemistry research methods and experimental data Taking a fresh approach to polymer physical chemistry, ...