А. Коферменты переноса групп

Нуклеозидфосфаты (1) являются не только исходными соединениями в биосинтезе нуклеиновых кислот, они обладают также функциями коферментов, служат для запасания энергии и участвуют в цепи переноса энергии (см. Деградация порфиринов) в эндоэргических процессах. Метаболические интермедиаты часто становятся реакционноспособными («активированными») при присоединении фосфатсодержащих остатков (фосфорилирование). Так, присоединение нуклеозиддифосфатных остатков делает реакционноспособными исходные соединения в синтезе полисахаридов и липидов (см. Сортировка белков). Лигазы катализируют сшивание соединений за счёт энергии нуклеозидтрифосфатов.

Остатки жирных кислот активируются путём переноса на кофермент A (2). В коферменте A пантетеин через фосфоангидридную связь присоединён к 3′-фосфо-АДФ. Пантетеин состоит из трёх компонентов, связанных амидными связями: пантоевой кислоты, β-аланина и цистеамина, то есть двух биогенных аминов, образованных путём де-карбоксилирования соответственно аспартата и цистеина (см. Механизм действия гидрофильных гормонов). Пантотеновая кислота, образованная из пантоевой кислоты и β-аланина, в организме человека играет роль витамина (см. Водорастворимые витамины. I). При реакции тиоловой группы остатка цистеамина с карбоновой кислотой образуется тиол-сложно-эфирная связь, как, например, в ацетил-КоА (ацетил-СоА). Эта реакция высоко эндоэргична и поэтому сопряжена с экзоэргическими процессами. Тиоэфир, каким является ацил-КоА, представляет собой активированную форму карбоновой кислоты, так как образующий её ацильный остаток может легко переноситься на другую молекулу. Этот принцип часто используется при метаболических превращениях.

Тиаминдифосфат (ТРР, 3) активирует альдегиды и кетоны и переносит их в виде гидроксиалкильных групп на другую молекулу. Этот способ переноса важен, например, в транскетолазной реакции (см. Моча). Гидроксиалкильные остатки участвуют также в декарбоксилировании кетокислот. Они либо высвобождаются в виде альдегидов, либо переносятся на липоамидные остатки, как в случае дегидрогеназ 2-кетокислот (см. Процессы пищеварения).

Пиридоксальфосфат (PLP) (4) — наиболее важный кофермент в метаболизме аминокислот. Его роль при трансаминировании будет подробно рассмотрена в статье Гидрофильные гормоны. Пиридоксальфосфат принимает участие и в других реакциях аминокислот, таких, как декарбоксилирование и дегидратирование. Представленная здесь альдегидная форма в свободном виде не встречается. В отсутствие субстрата альдегидная группа связана с аминогруппой лизинового остатка фермента в виде альдимина («шиффово основание»).

Карбоксилазы содержат в качестве кофермента биотин (5). Он связан амидной связью с боковой цепью лизинового остатка фермента. Биотин реагирует с гидрокарбонатом (HCO3-) в присутствии АТФ с образованием N-карбоксибиотина. Эта активированная форма диоксида углерода может быть перенесена на другую молекулу. Примерами биотинзависимых реакций являются образование оксалоацетата из пирувата (см. Реабсорбция электролитов и воды) и синтез малонил-КоА из ацетил-КоА (см. Питание. Органические вещества).

Тетрагидрофолат [ТГФ (THF), 6] является коферментом, который может переносить C1-остатки в различных состояниях окисления. ТГФ образуется из витамина фолиевой кислоты двойным гидрированием птеринового кольца. C1-фрагменты присоединяются к N-5, N-10 или к обоим атомам азота. Наиболее важными производными тетрагидрофолата являются:

а) N10-формил-ТГФ, в котором C1-остаток находится в виде карбоксильной группы,

б) N5, N10-метилен-ТГФ, в котором C1-остаток находится в виде альдегида

и в) N5-Meтил-THF, где C1 находится в виде спирта. Переносимый ТГФ C1-фрагмент играет важную роль, например, в синтезе пуриновых нуклеотидов (см. Цитостатики), дезокситимидинмонофосфата (см. Биосинтез нуклеотидов) и метионина.


Метаболизм. Ферменты / Коферменты переноса групп

Статьи раздела «Коферменты переноса групп»:

Следущая статья   |   — Вернуться в раздел


Афинная модификация биополимеров / Монография посвящена одному из самых информативных методов физико-химической биологии — афинной модификации белков, нуклеиновых кислот и нуклеопротеидов. В ней излагаются теоретические основы метода и рассматриваются особенности приложения метода к ряду наиболее интенсивно изучаемых с его помощью биАфинная модификация биополимеров
Монография посвящена одному из самых информативных методов физико-химической ...
Онкоэндокринология / Монография посвящена анализу ключевых проблем современной эндокринологии онкологических заболеваний и представляет собой критическое обобщение сведений, содержащихся в литературе, и результатов работы коллектива, возглавляемого автором и имеющего многолетние научные традиции. В основных разделах книОнкоэндокринология
Монография посвящена анализу ключевых проблем современной эндокринологии ...
Physical Properties of Macromolecules / Explains and analyzes polymer physical chemistry research methods and experimental data Taking a fresh approach to polymer physical chemistry, Physical Properties of Macromolecules integrates the two foundations of physical polymer science, theory and practice. It provides the tools to understand poPhysical Properties of Macromolecules
Explains and analyzes polymer physical chemistry research methods and experimental data Taking a fresh approach to polymer physical chemistry, ...
Новейшие методы исследования биосистем / Книга охватывает широкий круг методов, таких как молекулярная динамика, жидкостная хроматография, масс-спектрометрия, рентгено-структурный анализ, инфракрасная спектроскопия, просвечивающая и растровая электронная микроскопия, биофизические нанотехнологии, протеомика. Монография насыщена новейшими пНовейшие методы исследования биосистем
Книга охватывает широкий круг методов, таких как молекулярная динамика, ...