А. Модель Михаэлиса-Ментен

Полный математический анализ ферментативной реакции приводит к сложным уравнениям, не пригодным для практического применения. Наиболее удобной оказалась простая модель, разработанная в 1913 году. Она объясняет характерную гиперболическую зависимость активности фермента от концентрации субстрата (1) и позволяет получать константы, которые количественно характеризуют эффективность фермента.

Модель Михаэлиса-Ментен исходит из того, что вначале субстрат A образует с ферментом Е (3) комплекс, который превращается в продукт B намного быстрее, чем в отсутствие фермента. Константа скорости kкат (2) намного выше, чем константа некаталитической реакции k. Константу kкат называют ещё «числом оборотов», поскольку она соответствует числу молекул субстрата, превращаемых в продукт одной молекулой фермента за 1 с. Согласно этой модели, активность фермента определяется долей комплекса ЕА от общей концентрации фермента [E]t, то есть, отношением [ЕА]/[E]t (3). С целью упрощения модель предполагает, что Е, A и ЕА находятся в химическом равновесии согласно закону действующих масс (см. Равновесие), что даёт в итоге для диссоциации комплекса ЕА уравнение:

[Е][А]/[ЕА] = Кm

Поскольку [E]t = [Е] + [ЕА],

[ЕА] = [E]t[A]/(Km + [А])

Из v = kкат[ЕА] (2) и предыдущего выражения получают уравнение Михаэлиса-Ментен (4).

Уравнение содержит две величины (два параметра), которые не зависят от концентрации субстрата [A], но характеризуют свойства фермента: это произведение kкат[Е]t соответствующее максимальной скорости реакции V при высокой концентрации субстрата, и константа Михаэлиса Km, характеризующая сродство фермента к субстрату. Константа Михаэлиса численно равна той концентрации субстрата [A], при которой v достигает половины максимальной величины V (если v = V/2, то [A]/(Km + [A]) = 1/2, то есть Km = [А]). Высокое сродство фермента к субстрату характеризуется низкой величиной Km и наоборот.

Модель Михаэлиса-Ментен основывается на нескольких не совсем реальных допущениях, таких, как необратимое превращение ЕА в Е + B, достижение равновесия между Е, A и ЕА, отсутствие в растворе других форм фермента, кроме Е и ЕА. Только при соблюдении этих гипотетических условий Km соответствует константе диссоциации комплекса, а kкат — константе скорости реакции ЕА → Е + B.


Метаболизм. Ферменты / Кинетика ферментативных реакций

Статьи раздела «Кинетика ферментативных реакций»:

Следущая статья   |   — Вернуться в раздел


How to Build a Dinosaur: The New Science of Reverse Evolution / A world-renowned paleontologist reveals groundbreaking science that trumps science fiction: how to grow a living dinosaur Over a decade after Jurassic Park, Jack Horner and his colleagues in molecular biology labs are in the process of building the technology to create a real dinosaur. Based on new How to Build a Dinosaur: The New Science of Reverse Evolution
A world-renowned paleontologist reveals groundbreaking science that trumps science fiction: how to grow a living dinosaur Over a decade after Jurassic ...
Планета вирусов / Вирусы — невидимые, но активные участники борьбы за место в биосфере Земли. С их помощью происходит обмен ДНК между биологическими видами, они предоставляют новый генетический материал для эволюции и контролируют рост популяций. Каждое живое существо — от одноклеточных до млекопитающих — испытывает Планета вирусов
Вирусы — невидимые, но активные участники борьбы за место в биосфере Земли. С их ...
Handbook of Nanoindentation: With Biological Applications / Broadly divided into two parts, this guide’s first part presents the a’basic sciencea’ of nanoindentation, including the background of contact mechanics underlying indentation technique, and the instrumentation used to gather mechanical data. Both the mechanics background and the instrumentation oveHandbook of Nanoindentation: With Biological Applications
Broadly divided into two parts, this guide’s first part presents the a’basic sciencea’ of nanoindentation, including the background of contact ...